Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Environ Pollut ; 348: 123787, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548159

RESUMO

The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Microplásticos , Plásticos , Chumbo/análise , Metais Pesados/análise , Plantas , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Chemosphere ; 354: 141649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458356

RESUMO

To avoid the difficulty of separating solids from liquids when reusing powder photocatalysts, 3D stereoscopic photocatalysts were constructed. In this study, three-dimensional S defect-rich MoS2 hierarchical aerogel was prepared by chemical cross-linking of functional ultrathin 2D MoS2. Its phase, micro-morphology and structure were characterized, and it was used in the study of photocatalytic degradation of organic pollutants. Of the samples tested, MS@CA-3 (i.e., defect-rich 3D MoS2 aerogel with a loading of 30 mg of defect-rich MoS2) exhibited the best photocatalytic activity due to its suitable load, good light transmission, and a degradation rate of up to 91.0% after 3 h. In addition, MS@CA-3 aerogel offers high recyclability and structural stability, and the degradation rate of the organic pollutant methylene blue decreases only 9.8% after more than ten cycles of photocatalytic degradation. It combines the high catalytic performance of S defect-rich 2D MoS2 and the convenient reusability of hierarchical porous aerogel. This study provides valuable data and a reference for the practical promotion and application of photocatalytic technology in the field of environmental remediation.


Assuntos
Poluentes Ambientais , Molibdênio , Porosidade , Catálise , Corantes
3.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306233

RESUMO

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Assuntos
Shewanella putrefaciens , Urânio , Biomineralização , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Shewanella putrefaciens/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Urânio/química , Compostos de Ferro/química
4.
Toxicol Lett ; 394: 46-56, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408587

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants attached to fine particulate matter in the atmosphere. They induce lung inflammation, asthma, and other lung diseases. Exploring the toxic mechanism of PAHs on lung epithelial cells may provide a theoretical basis for the prevention and treatment of respiratory diseases induced by PAHs. In our study, 16 human bronchial epithelial (16HBE) cells were exposed to different concentrations of gypsum dust, Benzo(a)pyrene (BaP), and BaP-loaded gypsum dust for 24 hours. Gypsum dust loaded with BaP significantly increased the cytotoxicity of 16HBE cells, enhanced the production of lactate dehydrogenase (LDH), interleukin-6 (IL-6) and interleukin-8 (IL-8), induced cell apoptosis, and upregulate the expression of hsa_circ_0008500 (circ_0008500). The mechanism was studied with a BaP-loaded gypsum dust concentration of 1.25 mg/mL. StemRegenin 1 (SR1) pretreat significantly reduced the release of LDH, IL-6, and IL-8 and decreased the protein levels of Ahr、XAP2, C-myc, and p53. Second-generation sequencing indicated that circ_0008500 was highly expressed after 16HBE induced by BaP-loaded gypsum dust. Functional experiments confirmed that circ_0008500 promoted the inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust by regulating the Ahr signaling pathway. Our study showed that fine particulate matter adsorption of BaP significantly increased the toxic effect of BaP on cells. By activating the Ahr/C-myc pathway, circ_0008500 promoted inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sulfato de Cálcio/metabolismo , Sulfato de Cálcio/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Células Epiteliais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poeira , Apoptose , Material Particulado/toxicidade
5.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337327

RESUMO

Crystalline poly-para-xylylene (parylene) has the potential for use as a protective membrane to delay the nucleation of explosives by separating the explosives and their decomposition products to decrease the explosive sensitivity. Here, molecular dynamics (MD) and density functional theory (DFT) techniques were used to calculate the dissociative adsorption configurations of 1,1-diamino-2,2-dinitroethylene (FOX-7) on (001)- and (101)-oriented crystalline parylene membranes. Based on the results of the calculations, this work demonstrates that the -NO2-π electrostatic interactions are the dominant passivation mechanism of FOX-7 on these oriented surfaces. FOX-7 can dissociatively adsorb on oriented parylene membranes due to the interactions between the LUMO of the toluene (or methyl) groups on parylene and the HOMO of the -NO2 (or -NH2) groups on FOX-7. The formation of a new intermolecular H-bond with the ONO group leads to FOX-7 decomposition via intramolecular C-NO2 bond fission and nitro-to-nitrite rearrangement. The most likely adsorption configurations are described in terms of the decomposition products, surface active groups of parylene, binding behaviors, and N charge transfer. Importantly, the (001)-oriented parylene AF8 membrane is promising for use as a protective membrane to passivate the high-energy -NO2 bonds during the dissociative adsorption of FOX-7. This study offers a new perspective on the development of protective membranes for explosives.

6.
Sci Total Environ ; 918: 170512, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38286278

RESUMO

Wintertime fine particle (PM2.5) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM2.5 compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM2.5, followed by nitrate, sulfate and ammonium. Shares of organic aerosol in PM2.5 mass decreased with the elevated PM2.5 levels, while the enhancements of sulfate and secondary organic aerosol were much less than that of nitrate and ammonium during heavy pollution with increased ratios of nitrate to sulfate, implying a significant role of nitrate in the haze formation. Results also suggest the nighttime chemistry might contribute substantially to the formation of nitrate under severe pollutions. The daily average aerosol pH showed a decreasing trend with the elevated levels of PM2.5, and this increased aerosl acidity was mainly due to the fast rising secondary inorganic aerosol (SIA) concentration, with the increase in hydronium ion concentration in air (Hair+) surpassing the dilution effect of elevated aerosol liquid water content (LWC). Thermodynamic model calculations revealed that the air environment was NH3-rich with total NHx (NH3 + NH4+) greater than required NHx, and the aerosol pH exponentially declined with the decreasing excess NHx (p < 0.01). This study demonstrated that under air stagnation and NH3-rich environment during winter, the raised relative humidity (RH) would lead to an increase in LWC and thereby facilitate the aqueous chemistry processes with the neutralization capacity of NH3 to form sulfate and nitrate, which would further increase the LWC and lower the pH. This self-amplifying SIA formation might be crucial to the severe PM2.5 pollution and haze events during winter, and therefore cutting both NOx and NH3 emissions would benefit stopping the self-amplification.

7.
Sci Total Environ ; 912: 169438, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135082

RESUMO

Shewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen. In this study, we ensure that all experiments are performed in an anaerobic glove box, and we elucidate through a combination of macroscopic experimental findings and microscopic characterization that the presence of inorganic phosphates enhances the mineralization of uranyl ions on the surface of S. putrefaciens, while zero-valent iron (ZVI) facilitates the immobilization of uranium by promoting the reduction of uranium by S. putrefaciens. Interestingly, when inorganic phosphates and ZVI co-exist, both the mineralization and reduction of uranium on the bacterial surface are simultaneously enhanced. However, these two substances exhibit a certain degree of antagonism in terms of uranium immobilization by S. putrefaciens. Furthermore, it is found that the influence of pH on the mineralization and reduction of uranyl ions is far more significant than that of inorganic phosphates and ZVI. This study contributes to a better understanding of the environmental fate of uranium in real-world settings and provides valuable theoretical support for the bioremediation and risk assessment of uranium contamination.


Assuntos
Shewanella putrefaciens , Urânio , Ferro/química , Urânio/química , Fosfatos , Anaerobiose , Íons
8.
Environ Pollut ; 344: 123269, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159627

RESUMO

The removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.52%), high adsorption capacity (qe = 618.8 mg g-1), and strong resistance to organics and impurity interference is achieved. The adsorption rate of U(VI) in both real organic and laundry wastewater containing uranium is as high as 99.7%, and the partition coefficients (Kd) are 7.61 × 105 mL g-1 and 9.16 × 106 mL g-1, respectively. The saturated adsorption capacity of PAN-AO-A in the continuous system solution can reach up to 505.5 mg g-1, and the concentration of U(VI) in the effluent is as low as 1 µg L-1. XPS analysis and Density functional theory (DFT) studies the coordination form between U(VI) and PAN-AO-A, where the most stable structure is η2-AO(UO2)(CO3)2. The -NH-/-NH2 and -C(NH2)N-OH groups of PAN-AO-A exhibit a synergistic complex effect in the U(VI) adsorption process. PAN-AO-A is a material with profound influence and limitless potential that can be used for wastewater containing U(VI) and organic matter.


Assuntos
Urânio , Águas Residuárias , Urânio/análise , Poliaminas , Oximas/química , Adsorção
9.
Environ Sci Pollut Res Int ; 30(39): 90787-90798, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37462873

RESUMO

Phosphogypsum (PG), which has great environmental harm and restricts the sustainable development of phosphorus chemical industry, is a solid waste produced in phosphoric acid production. Thermal decomposition of PG is an extensive way to reutilization of resource, and the key point is to establish an appropriate decomposition path and catalyst system of PG. In the work, the strategy for low-temperature and highly-efficient decomposition of PG is established based on the thermodynamic analysis and the experimental research by metal ions to reduce the decomposition temperature. Meanwhile, SEM(Scanning Electron Microscope) is used to characterize the composition and morphology of PG in the various conditions, also the decomposition temperature is analyzed by TGA(Thermogravimetric Analysis). Then, the decomposition ratio via Fe3+/Co2+/Ni2+ unitary/ternary catalyst is obtained by precipitation method. Through kinetic analysis combined with XRF(X-ray Fluorescence Spectrometer) and EDX(Energy Dispersive X-Ray Spectroscopy) results, it is found that there is a reaction competition in the decomposition process by Fe3+/Co2+/Ni2+ ternary catalyst. Further the mechanism of catalytic system on PG is derived. The present work can be concluded that Fe3+/Co2+/Ni2+ can effectively reduce the decomposition temperature of PG, and the effect of ternary metal is more obvious than that of unitary metal. Finally, pomelo peel is used instead of coke to successfully decompose PG at low temperature by one step method. The establishment of low temperature decomposition system of PG has potential application in phosphorus chemical industry and is in line with sustainable development.


Assuntos
Metais , Fósforo , Temperatura , Cinética , Fósforo/análise
10.
Environ Pollut ; 330: 121789, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164219

RESUMO

Inorganic mineral particles play an important role in the formation of atmospheric aerosols in the Sichuan Basin. Atmospheric haze formation is accompanied by the phase transition of mineral particles under high humidity and stable climatic conditions. Backward trajectory analysis was used in this study to determine the migration trajectory of atmospheric mineral particles. Furthermore, Positive matrix factorization (PMF) was used to analyze the sources of atmospheric mineral particles. The phase transition mechanisms of atmospheric mineral particles were studied using ion chromatography, inductively coupled plasma emission spectrometry, total organic carbon analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, and grand canonical Monte Carlo methods. Three migration and phase transition paths were identified for the mineral particles. Sources of atmospheric mineral particles included combustion, vehicle emissions, industrial emissions, agricultural sources, and mineral dust. The main mineral phases in atmospheric particles, calcite and dolomite, were transformed into gypsum, and muscovite may be transformed into kaolinite. The phase transition of mineral particles seriously affects the formation of aerosols and worsens haze. Typically, along the Nanchong-Suining-Neijiang-Zigong-Yibin path, calcite is converted into gypsum under the influence of man-made inorganic pollution gases, which worsen the haze conditions and cause slight air pollution for 3-5 days. However, along the Guangyuan-Mianyang-Deyang-Chengdu-Meishan-Ya'an path, anthropogenic volatile organic compounds (VOCs) hindered gypsum formation from dolomite. Furthermore, dolomite and VOCs formed stable adsorption systems (system energies from -0.41 to -4.76 eV, long bonds from 0.20 to 0.24 nm). The adsorption system of dolomite and m/p-xylene, with low system energy (-1.46 eV/-1.33 eV) and significant correlation (r2 = 0.991, p < 0.01), was the main cause of haze formation. Consequently, calcite gypsification and dolomite--VOC synergism exacerbated regional haze conditions. This study provides a theoretical reference for the mechanism of aerosol formation in basin climates.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Sulfato de Cálcio/análise , Estações do Ano , Carbonato de Cálcio/análise , Emissões de Veículos/análise , Aerossóis/análise , Monitoramento Ambiental/métodos , China
11.
Environ Sci Pollut Res Int ; 30(28): 72807-72820, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178294

RESUMO

Based on the composite pollution of atmospheric microbial aerosol, this paper selects the calcite/bacteria complex as the research object which was prepared by calcite particles and two common strains of bacteria (Escherichia coli, Staphylococcus aureus) in the solution system. The morphology, particle size, surface potential, and surface groups of the complex were explored by modern analysis and testing methods, with an emphasis on the interfacial interaction between calcite and bacteria. The SEM, TEM, and CLSM results showed that the morphology of the complex could be divided into three types: bacteria adhering to the surface or edge of micro-CaCO3, bacteria aggregating with nano-CaCO3, and single nano-CaCO3 wrapping bacteria. The complex's particle size was about 2.07 ~ 192.4 times larger than the original mineral particles, and the nano-CaCO3/bacteria complex's particle size variation was caused by the fact that nano-CaCO3 has agglomeration in solution. The surface potential of the micro-CaCO3/bacteria complex (isoelectric point pH = 3.0) lies between micro-CaCO3 and bacteria, while the surface potential of the nano-CaCO3/bacteria complex (isoelectric point pH = 2.0) approaches the nano-CaCO3. The complex's surface groups were based primarily on the infrared characteristics of calcite particles, accompanied by the infrared characteristics of bacteria, displaying the interfacial interaction from the protein, polysaccharides, and phosphodiester groups of bacteria. The interfacial action of the micro-CaCO3/bacteria complex is mainly driven by electrostatic attraction and hydrogen bonding force, while the nano-CaCO3/bacteria complex is guided by surface complexation and hydrogen bonding force. The increase in the ß-fold/α-helix ratio of the calcite/S. aureus complex indicated that the secondary structure of bacterial surface proteins was more stable and the hydrogen bond effect was strong than the calcite/E. coli complex. The findings are expected to provide basic data for the mechanism research of atmospheric composite particles closer to the real environment.


Assuntos
Carbonato de Cálcio , Escherichia coli , Carbonato de Cálcio/química , Escherichia coli/metabolismo , Staphylococcus aureus , Bactérias/metabolismo , Tamanho da Partícula , Proteínas de Bactérias
12.
J Environ Radioact ; 262: 107168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003252

RESUMO

Arsenic (As) and uranium (U) frequently occur together naturally and, in consequence, transform into cocontaminants at sites of uranium mining and processing, yet the simultaneous interaction process of arsenic and uranium has not been well documented. In the present contribution, the influence of arsenate on the removal and reduction of uranyl by the indigenous microorganism Kocuria rosea was characterized using batch experiments combined with species distribution calculation, SEM-EDS, FTIR, XRD and XPS. The results showed that the coexistence of arsenic plays an active role in Kocuria rosea growth and the removal of uranium under neutral and slightly acidic conditions. U-As complex species of UO2HAsO4 (aq) had a positive effect on uranium removal, while Kocuria rosea cells appeared to have a large specific surface area serving as attachment sites. Furthermore, a large number of nano-sized flaky precipitates, constituted by uranium and arsenic, attached to the surface of Kocuria rosea cells at pH 5 through P=O, COO-, and C=O groups in phospholipids, polysaccharides, and proteins. The biological reduction of U(VI) and As(V) took place in a successive way, and the formation of a chadwickite-like uranyl arsenate precipitate further inhibited U(VI) reduction. The results will help to design more effective bioremediation strategies for arsenic-uranium cocontamination.


Assuntos
Arsênio , Monitoramento de Radiação , Urânio , Arseniatos/química , Urânio/metabolismo
13.
Plants (Basel) ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771765

RESUMO

Crop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria (Bradyrhizobium japonicum) and PSMs (Saccharomyces cerevisiae and Saccharomyces exiguus) on atmospheric N2-fixation, growth, and yield. The results indicate a significant influence of interaction on Indole-3-acetic acid production, P solubilization, seedling germination, and growth. It was also found that atmospheric N2-fixation, nodule number per plant, nodule dry weight, straw, and root dry weight per plant at different growth stages were significantly increased under dual inoculation treatments relative to single inoculation or no inoculation treatment. Increased seed yield and N and P accumulation were also noticed under co-inoculation treatments. Soil available N was highest under sole bacterial inoculation and lowest under the control treatment, while soil available P was highest under co-inoculation treatments and lowest under the control treatment. We demonstrated that the co-inoculation of N-fixing bacteria and PSMs enhances P bioavailability and atmospheric N2-fixation in soybeans leading to improved soil fertility, raising crop yields, and promoting sustainable agriculture.

14.
Foods ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673405

RESUMO

Cadmium contamination and toxicity on plants and human health is a major problem in China. Safe rice production in Cd-contaminated alkaline soils, with acceptably low Cd levels and high yields, remains an important research challenge. To achieve this, a small-scale field experiment with seven different soil amendment materials was conducted to test their effects performance. Two best-performing materials were selected for the large-scale field experiment. Combinations of humic acid, foliar, and/or soil silicon fertilization and deep or shallow plowing were designed. It was found that the combination, including humic acid, soil and foliar silicate fertilization, and shallow plowing (5-10 cm), produced the most desirable results (the lowest soil bioavailable Cd, the lowest grain Cd concentrations, and the highest grain yield). Rice farmers are therefore recommended to implement this combination to attain high grain yield with low Cd concentrations in alkaline soils.

15.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679159

RESUMO

In this study, we analyzed the removal efficiency of uranium(U(VI)) in wastewater at relatively low concentrations using strong alkaline ion exchange fiber (SAIEF). Static tests showed that the strong alkali fibers can purify U(VI) containing wastewater in a concentration range of 20-100 mg L-1 with an optimal pH of 10.5 and contact time of 15-30 min. Adsorption and desorption cycling tests indicated that, adsorbed uranium is easily desorbed by 0.1 mol L-1 HCl, and the fiber still maintained the original adsorption efficiency after eight cycles. According to dynamic penetration test results, the SAIEF saturation adsorption capacity was 423.9 mg g-1, and the effluent concentration of uranium through two series columns was less than 0.05 mg L-1, reaching the national standard for non-receiving water (GB23727-2009) SEM-EDS and FTIR analysis revealed that the functional group of SAIEF is CH2N+(CH3)3Cl-. Addotionally, the major forms of fiber exchange adsorption are (UO2)2CO3(OH)3-, UO2(CO)34- and UO2(OH)3-. The results indicate that the SAIEF is an excellent material for uranium removal.

16.
Nurs Open ; 10(6): 3603-3612, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694442

RESUMO

AIM: This study aimed to examine the relationships between how workplace stress and social support affect the level of humanistic caring ability in Chinese nurses. DESIGN: A cross-sectional study. METHODS: The sample consists of 675 nurses working in major hospitals in China. Participants completed a set of self-reported measures, including the humanistic caring ability scale (HCAS), the Chinese nurse workplace stressor scale (CNWSS), the Chinese nurse stress response scale (CNSRS), and the Chinese nurse social support scale (CNSSS). Pearson's correlation analysis and structural equation modelling (SEM) were performed to investigate the relationships among studied variables. RESULTS: The result showed that HCAS was negatively correlated with CNWSS (r = -0.427, p < 0.01) and CNSRS (r = -0.480, p < 0.01), and was positively correlated with CNSSS (r = 0.363, p < 0.01). Furthermore, a final model was conducted in which CNWSS has a strong direct effect on CNSRS (ß = 0.54, p < 0.01) and an indirect effect on HCAS (ß = -0.138, p < 0.01), which was mediated by CNSRS and CNSSS.


Assuntos
Enfermeiras e Enfermeiros , Estresse Ocupacional , Humanos , Estudos Transversais , População do Leste Asiático , Apoio Social
17.
Environ Toxicol Chem ; 42(3): 594-604, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582152

RESUMO

Atmospheric micro-/nanominerals play an important role in the adsorption, enrichment, and migration of organochlorine pesticides (OCPs). In the present study, the correlations between OCPs and minerals in outdoor atmospheric dustfall were investigated, and the correlations were used to speculate the source of p,p'-(dicofol+dichlorobenzophenone [DBP]), which is the sum of p,p'-dicofol and p,p'-DBP. Atmospheric dustfall samples were collected from 53 sites in the Chengdu-Deyang-Mianyang economic region in the Sichuan basin. In this region, 24 OCPs were analyzed by gas chromatography-tandem mass spectrometry. The average concentration of 24 OCPs was 51.2 ± 27.4 ng/g. The results showed that the concentration of Σ24 OCPs in urban areas was higher than that in suburban areas (p < 0.05). Minerals in atmospheric dustfall were semiquantitatively analyzed by X-ray diffraction. The primary minerals were quartz, calcite, and gypsum. A Spearman correlation analysis of OCPs and minerals showed that low-volatility OCPs could be adsorbed by minerals in atmospheric dustfall. A density functional theory simulation verified that p,p'-(dicofol+DBP) in atmospheric dustfall was primarily derived from the p,p'-dicofol adsorbed by gypsum. Isomeric ratio results suggested that the samples had weathered lindane and chlordane profiles and confirmed that residents in the Sichuan basin used technical dichlorodiphenyltrichloroethane. Finally, the OCPs were evaluated to determine the potential risk of cancer in adults and children from OCP exposure. Exposure to OCPs via atmospheric dustfall was safe for adults. The cancer risk for children exposed to OCPs was slightly lower than the threshold value (10-6 ) under a high dust ingestion rate, which poses a concern. Environ Toxicol Chem 2023;42:594-604. © 2022 SETAC.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Criança , Humanos , Adsorção , Sulfato de Cálcio/análise , Dicofol/análise , Cromatografia Gasosa-Espectrometria de Massas , Praguicidas/análise , Hidrocarbonetos Clorados/análise , DDT/análise , Medição de Risco , China , Monitoramento Ambiental/métodos
18.
J Hazard Mater ; 443(Pt B): 130324, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444053

RESUMO

The contamination of saline soil with hazardous petroleum hydrocarbons is a common problem across coastal areas globally. Bioaugmentation combined with chemical treatment is an emerging remediation technique, but it currently shows low efficiency under high saline environments. In this study, we screened and used a novel halotolerant lipolytic fungal consortium (HLFC) combined with hematite (Fe2O3) for the bioremediation of diesel contaminated saline soils. The changes in total petroleum hydrocarbons (TPH) concentrations, enzyme activity, and microbial diversity were compared among different treatments (HLFC, hematite, hematite-HLFC, and control). The results showed that TPH degradation was significantly (P < 0.05) enhanced in hematite-HLFC (47.59-88.01%) and HLFC (24.26-72.04%) amended microcosms across all salinity levels, compared to the treatments of hematite (23.71-66.26%) and control (6.39-55.20%). TPH degradation was positively correlated with lipase and laccase enzyme activities, electrical conductivity, and the water holding capacity of the soil. Analyses of the microbial community structure showed that microbial richness decreased, while evenness increased in HLFC and hematite-HLFC treatments. The relative abundances of Alicyclobacillus, Sediminibacillus, Alcanivorax, Penicillium, Aspergillus, and Candida genera were significantly high in hematite-HLFC and HLFC amended microcosms. Our findings provide a promising new microbial-based technique, which can degrade TPH efficiently in saline soil.


Assuntos
Petróleo , Salinidade , Aspergillus , Lipase , Solo
19.
Chemosphere ; 309(Pt 2): 136745, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209860

RESUMO

Photocatalytic removal of organic pollutants is a promising pollution treatment technology from the aspect of carbon neutrality. The complex diversity of actual wastewater components, as opposed to single-component systems, can significantly affect photocatalytic mechanisms. In this study, complex pollutant systems were created using various coordinating agents, and the effects of P25 on the photocatalytic removal of methyl orange (MO) in these systems and corresponding photocatalytic mechanism were investigated. The results show that photocatalytic removal of MO by P25 using ligands is significantly more efficient, especial removal of MO by the EDTA-P25 (P-E2.5) coordination system resulted dramatically improved MO removal (97.4% versus 12.3% achieved by pure P25 after 15 min), with the reaction rate improved 23.8-fold. Theoretical calculations show that the effective coordination bonds formed by the coordinating agent and Ti atoms reduce the adsorption energy of P25 for MO. In addition, introduction of the coordinating agent EDTA reduces the transition state energy during the MO degradation process and greatly accelerates the reaction rate, and the conduction band position of the EDTA-P25 coordination system shifts to a more negative potential, which induces to the generation of •O2- for effective MO degradation.


Assuntos
Poluentes Ambientais , Águas Residuárias , Catálise , Ligantes , Ácido Edético , Titânio/química , Carbono
20.
Langmuir ; 38(38): 11529-11538, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099550

RESUMO

To safely dispose radioactive waste (including, e.g., thorium and radiostrontium), Ce4+ and Sr2+ were chosen as simulated surrogates of α and ß waste and were introduced into the Gd3+ site in Gd2Zr2O7 to maintain the average cationic radius and to compensate for charge. A series of Gd2-xSrx/2Cex/2Zr2O7 (0.00 ≤ x ≤ 0.25) compounds were examined by experimental and theoretical calculations to investigate the co-doping effects of α and ß waste in a Gd2Zr2O7-based matrix. The effects of Ce4+ and Sr2+ content on the phase, unit cell parameters, active modes, mechanical property, and microstructure were studied systematically. Moreover, the limit of incorporation of Ce4+ and Sr2+ in Gd2Zr2O7 pyrochlore and the lattice parameters were also calculated through virtual crystal approximation theory, and the results were found to well agree with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...